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(ces domaines ne prdsentent que des d6formations d'al- 
longement) et, pour les domaines 'a '  off 

d14 = dls, 5. 
X 4  = d15E2 = dlsE (3) 

(ces domaines ne prdsentent que des d6formations de 
cisaillement). 

Les observations faites s'expliquent par les relations 
(1), (2) et (3). Exceptd au voisinage des domaines 'a', 
les ddformations du cristal 'c' consistent essentielle- 
ment en un allongement de la maille conformdment 
aux 6quations (2). 

Par contre les domaines 'a '  sont soumis 5. un cisaille- 
ment mais l '6quation (3) n'est pas applicable, ces do- 
maines petits n'dtant pas libres de contraintes. Les 
mouvements de rotation observ6s sont en relation avec 
cet effet dont l'influence s'6tend aux domaines 'c' con- 
tigus. 

Compte tenu des difficult6s d'analyse des d6forma- 
tions d'une structure polydomaine, le seul r6sultat 
quantitatif rigoureux concerne le coefficient d33. C'est 
ainsi que les rotations observ6es pour les domaines 'a '  
sont supdrieures 5. la rotation qui serait dfie 5. un simple 
cisaillement, compte tenu de la valeur de dx5 (11,76.10 .6 
C.G.S.) donnde par Berlincourt & Jaffe (1958). 

La d6formation pi6zo61ectrique d'allongement enre- 
gistr6e pour le domaine 'c' loin des parois est constante 
quelque soit la rotation subie par les plans au point 
consid6r6. La valeur num6rique du co&ficient pi6zo- 
61ectrique d33 obtenu est 4,6 • 10 -6 C.G.S. 

La valeur donn6e par Berlincourt & Jaffe est 
2,57 • 10 -6 C.G.S., tandis que la valeur de Caspari & 
Merz (1950) est 3,96 • 10 -6 C.G.S., mais il s'agissait de 

mesures macroscopiques qui sont moins significatives 
si l 'on a pas affaire 5. un cristal parfaitement mono- 
domaine. 

Pour la rdgion 4, les dquations (2) donneraient les 
valeurs plus 61evdes 7 , 5 . 1 0  .6 et 9 . 1 0  .6 C.G.S. En 
fait ces 6quations ne sont plus valables en raison des 
contraintes. 

Conclusion 

On a voulu montrer le caract~re complexe du com- 
portement structural des cristaux de titanate de baryum 
avec et sans champ dlectrique appliqud; on a pu mettre 
en dvidence des rotations d'axes parall~les aux fron- 
ti~res des domaines sous Faction du champ, des dd- 
formations de la maille variable d 'un point 5. l'autre. 
Avec les modifications apportdes 5. la mdthode de 
Lambot-Vassamillet la carte des variations spaciales 
des distances rdticulaires et des ddsorientations peut 
~tre obtenue sans ambiguit6 et avec une bonne prdci- 
sion, en utilisant des temps de pose tr~s courts et avec 
des rdglages aisds. 
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The Resolution Function in Neutron Diffraetometry 

I. The Resolution Function of a Neutron Diffractometer and its Application 
to Phonon Measurements* 

BY M. J. COOPERt AND R. NATHANS 
Brookhaven National Laboratory, Upton, New York, U.S.A. 

(Received 31 October 1966) 

The general features of the resolution function of a crystal diffractometer and its experimental deter- 
mination are considered. An analytic expression is derived for its form for a three-crystal diffractometer 
assuming Gaussian mosaic and collimation functions. Under these conditions the loci of constant 
probability are shown to be ellipsoids and the application of the resolution function to neutron measure- 
ments is discussed with particular reference to inelastic phonon measurements. Experimental evidence 
is presented in support of these considerations. 

Introduction 

The resolution of neutron diffractometers has been 
considered by a number of authors because of two 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission. 

t Present address: Atomic Energy Research Establishment, 
Harwell, Berks, England. 

substantially different effects which it may have on the 
results of neutron scattering experiments. 

On the one hand focusing effects may result in in- 
creasing both the maximum intensity and the sharpness 
of diffraction peaks, as has been discussed by Caglioti 
and his coworkers (Caglioti, Paoletti & Ricci, 1958, 
1960; Caglioti & Ricci, 1962; Caglioti, 1964; Caglioti 
& Tocchetti, 1964, 1965), Shull (1960) and Willis (1960) 

A C 23 - 2* 
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for the case of Bragg reflections and by Collins (1963) 
and others for the case of inelastic phonon scattering. 
The focusing conditions depend on the collimation and 
on the mosaic spread of the monochromator and ana- 
lyzer crystals and these authors have examined in detail 
the best choice of the various adjustable parameters 
to utilize the focusing effects always present in crystal 
diffractometers. 

On the other hand it may be the detailed form of the 
scattering cross section which is of interest, in which 
case the parameters should be chosen so that this can 
be determined most accurately. Under these conditions, 
some types of focusing may be a severe disadvantage. 
A detailed consideration of the resolution function is 
then essential for a satisfactory analysis of the experi- 
mental results, both in the investigation of some types 
of diffuse scattering, for example critical magnetic scat- 
tering, and in the detailed study of peak shapes and 
widths, for example broadening of inelastic scattering 
peaks due to the finite life-times of phonons and mag- 
nons. 

It is our purpose in the present work to consider 
under what conditions it is possible to make accurate 
resolution corrections to the observed data and to 
present supporting experimental evidence. In the pre- 
sent paper we shall discuss the resolution function in 
general terms and then consider in detail its determi- 
nation for a three-crystal diffractometer and its appli- 
cation to phonon measurements. In a later paper we 
shall then consider the resolution function for a two- 
crystal diffractometer and its application to the meas- 
urement of both diffuse scattering and Bragg reflec- 
tions. 

Definition of the resolution function 

However, the presence of finite collimation and finite 
mosaic spread in the monochromator and analyzer 
allow less probable neutrons to be detected at the same 
settings. The resolution function of the instrument is 
the probability of detection of neutrons as a function 
of Am and AQ when the instrument has been set to 
measure a scattering process corresponding to the point 
O~o, Qo. 

Method of determination 

In order to calculate the resolution function we assume 
that the transmission function ofa Soller slit collimator 
and the mosaic spreads of the monochromator and 
analyzer are Gaussian distributions. This assumption 
allows us to calculate explicitly an analytic form for 
the resolution function at any point in e),Q space for 
any set of values for the instrumental parameters. 

Although the mosaic spreads of the crystals and the 
divergence angles of the collimators can be determined 
independently, the values so obtained may not be the 
effective values for the instrument as a whole. The fol- 
lowing procedure may therefore be adopted for deter- 
mining the effective values indirectly. By scanning a 
number of Bragg reflections from a perfect crystal 
sample the resolution function in ~o,Q space for these 
particular configurations can be determined and the 
effective instrumental parameters calculated. 

The collimating properties of Soller slit systems have 
been discussed by Sailor, Foote, Landon & Wood 
(1956), who point out that although the angular trans- 
mission function for these should be triangular, in prac- 
tice imperfections and critical reflection lead to a func- 
tion which is more nearly Gaussian in shape. These 
authors were concerned with fine collimation systems 

The layout of a typical three-crystal diffractometer is 
illustrated in Fig. 1 ; in a two-crystal diffractometer the 
analyzer is omitted and the detector is mounted to re- 
ceive directly the neutrons scattered by the sample at 
the desired angle. 20M, 20S, 20a are the scattering angles 
of the monochromator, sample, and analyzer respec- 
tively. 

The resolution of the diffractometer is best con- 
sidered in reciprocal space. We associate a scattering 
process in which the neutron loses an energy h(.o for a 
change in momentum of hQ with a particular point 
in co, Q space. The settings of 20M, 20s and 20A define 
the point in oo, Q space for which the probability of 
detection is highest, according to the relations: 

7~ 7~ 

kx= dM sin OM ke= da sin Oa (1) 

Q o = k F - k z  (2) 
h E 

h~o= y~m (k~-k~) (3) 

where dM and da are the d spacings of the mono- 
chromator and analyzer respectively and the angle be- 
tween kF and kz is 20s. 

NEUTRON SOURCE 

II 
~ MONOCHROMATOR 

Fig. 1. Layout  of a typical three-crystal diffractometer. 
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(<  10'). We have been able to confirm that the larger 
divergence systems (10-40') used in conventional dif- 
fractometers can have angular transmission functions 
which are essentially Gausslan in form over an ap- 
preciable angle. However, we may note that Shull 
(1960) has carried out resolution calculations for a 
triangular function and finds the results to be very 
closely the same as for a Gaussian function. 

I 1 I I I I I I 

GERMANIUM MONOCHROMATOR 

Fig.2. Observed rocking curve for the 220 reflection of a 
distorted germanium crystal. 

While the Gaussian form for the mosaic spread of 
ideally imperfect crystals is usually assumed in most 
extinction calculations, the large metal single crystals 
required for the monochromator and analyzer are 
usually found to have a lineage structure which varies 
from point to point on the crystal. However, the pro- 
cedure adopted by Barrett, Mueller & Heaton (1963) 
to distcrt relatively perfect germanium crystals* has 
been found to produce crystals with Gaussian shaFed 
rocking curves of about 15-30' full width at half height, 
as shown in Fig.2. These crystals are used in trans- 
mission geometry which, combined with their mosaic 
uniformity, leads to highly homogeneous monochro- 
matized neutron beams. 

D e r i v a t i o n  o f  t h e  r e s o l u t i o n  f u n c t i o n  

Fig.3 shows a vector diagram in reciprocal space. 
k~(PO) is the wave vector of the most probable incident 
neutron from the monochromator; kF(PQ) is the wave 
vector of this neutron after scattering through an angle 
20s and an energy transfer for optimum acceptance 
by the analyzer, k~ and ky are wave vectors correspond- 
ing to any scattering process in the sample and we 
shall define Ak~ = k ~ - k / a n d  Ak~,= k f - k F .  We define 

* As adapted in this laboratory by Dr Cox, Mr Hurst, and 
Mr Merkert. 

i i 

, , , , i i , , 
CRYSTAL ANGLE 

0.0 

211rT 
/o 

kF 

o / / k  20s 
kt 

M ~ M  ~ 

Fig. 3. Vector diagram in reciprocal space for a general scattering process. 
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also the horizontal and vertical divergence angles with 
respect to the optimum directions to be ~'0, ~1, 7z,)'3, and 
do, d~,c52, d3, respectively, where 0, 1, 2, and 3 refer to 
in-pile, monochromator to sample, sample to analyzer, 
and analyzer to detector regions respectively and all 
divergence angles are measured in the same sense (e.g. 
all ~,'s counterclockwise in Fig. 3). 

If there is no correlation between wave number and 
direction in the neutron beam striking the monochro- 
mator then the beam reflected from it will be correlated 
only with respect to its horizontal divergence. If the 
monochromator is set to reflect the required wavelength 
with maximum reflectivlty PM, then assuming a Gaus- 
sian mosaic spread defined by r/M (defined as the angle 
of mis-set of the crystal to give a probability of reflec- 
tion of exp(-½) times the optimum probability) the 
probability of reflection for a general neutron is: 

{ 1 ((Ak,/kz)tanOM+~)2} 
P(dki, 71) = PM exp -- -~- r/M ' 

(4) 
where OM is the Bragg angle of the monochromator 
for kz [equation (1)] and we assume that Aki is small 
compared with kz. 

Similarly, the probability of reflection by the ana- 
lyzer of a general scattered neutron is: 

{ 1 ((Akf/kF)tanOA-72)~} 
P(Aky, ~2) = PA exp -- ~- r/A ' 

(5) 
where OA is the Bragg angle of the analyzer for kF 
[equation (1)], PA is the optimum reflectivity of the 
crystal, r/A defines its mosaic spread (analogous to r/M) 
and we assume that Ak¢ is small compared with kF. 

Introducing now the transmission functions of the 
Soller slit systems, the probability of a neutron being 
detected is: 

{ 1 [ ( ( A k d k z ) t a n  OM+~'I) 2 =PMPAPo exp - -~- qM 

+ (_(Aky/kF) tan OA- ,2 ) 2 
rlA ( )2 + 2(Ak~/kz) tan OM+ 9,~ + :~'~ 9,~ 

• + 

(2(dkl/kv) tan OA--7'2) "+ ( 3~ , + 
-~3 \4 tan2OMrl~ + fl 2 ] 

+ + + (4  (6) 

where c~0,ai,c~2,.3 and flo,fl~,fl2,fl3 are the characteristic 
horizontal and vertical angles of the collimators defined 
so that the probability of transmission of a neutron 
with divergence angle ~0 (for example) is exp( -½)×  
P(ao=0).  Po and the expressions given for the in-pile 
collimation terms (in ~o,flo) are derived in Appendix I: 
the expressions for the detector collimation terms can 

be derived in the same way. In many instances the 
in-pile and detector collimations may be sufficiently re- 
laxed for the corresponding terms to be ignored. 

This expression for the probability can be separated 
into two independent terms, a horizontal term PH(Ak~, 
Akl, Yl, ~'z) and a vertical term Pv(dl, dz), such that the 
total probability P--  PI-I x Pv. The value of the resolu- 
tion function at a given point in co, Q space is then 
obtained by integrating the probability over all pos- 
sible paths (k,,kl) to that point: 

= l P(co'Q)dkidkj.  (7) R(co, Q) 

Before integration we transform our variables into 
co, Q space and hence determine R(coo+Aco, Q0+AQ).  
The details of this calculation are given in Appendix II, 
where it is shown that we can write the resolution func- 
tion in the form: 

R(co0 + Aco, Q0 + AQ) = 
4 4 

R0exp{-½ X X MkzXeXz}, (8) 
k = l  l=1 

where XI=AQz, X2=AQu, X3=AQz, X4=Aco and for 
convenience X1 is taken parallel to Qo and X3 is taken 
to be vertical. Ro is the optimum value of the resolution 
function R(coo, Qo). 

Ro and Mkz are involved functions of kit, coo, Q0 and 
rlM, rlz, dM, dA,C~o, ebC%C%flo,flbfl2,fl3 but the depen- 
dence of the resolution function on Aco and AQ is 
quite simple, being Gaussian for any straight line 
through coo Qo. Further, by setting the summation in 
the exponent in equation (8) equal to p we define the 
locus of points in co, Q space for which the resolution 
function has a value R0 exp( -p /2)  which is seen to be 
an ellipsoid: 

4 4 
X X M~zX~Xt=p. (9) 

k----1 l----I 

It is therefore convenient to visualize the resolution 
function by considering the 50~o (of R0) probability 
ellipsoid, for which p =  1.386. We shall refer to this 
ellipsoid as the resolution ellipsoid and illustrate its 
form in Fig. 4 for several sets of instrumental param- 
eters. 

to 

J 
Fig .4 .  The  re so lu t ion  el l ipsoid for  a set o f  typical  i n s t r u m e n t a l  

p a r a m e t e l s  wi th  va r ious  values  o f  dA. Rela t ive  scales:  
1 A-I(Q)- 10 A-2(co). 
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The observed intensity for a given scattering cross 
section will be: 

I(co0, Q0) = l R(co0 + ACO, Q0+ AQ).  
t J  

G(co0 + ACO, Q0 + AQ)AQACO. (10) 

If we have a cross section which is a 3 function at a 
particular point in co, Q space we can measure directly 
the magnitude of the resolution function at that point. 
Such a cross section is available in a Bragg reflection 
from a perfect crystal and we can use this to determine 
the resolution function in the plane co = 0, Q = QB = 2z~x. 
However, we are not able to move this fi function 
continuously in co, Q space, and to determine the reso- 
lution function for points offthis plane we must assume 
that we can consider the resolution function to be 
independent of coo and Q~ for small deviations of these 
from the values 0 and Qn, an assumption which is in 
general valid unless Q0 becomes very small. That is, 
we assume 

R(Acoo + Aco, Qn + AQ0 + AQ) = 
R(Aco, Q n + A Q )  (11) 

for small ACO0,AQ0(IIQB). 
Pictorially we are then scanning the resolution func- 

tion through the Bragg peak instead of scanning the 
Bragg peak through the resolution function. 

The results of such a determination using a perfect 
single crystal of germanium (r/~0.1') and Gaussian 
'distorted' germanium crystals as monochromator and 
analyzer are illustrated in Fig. 5, which shows sections 
of the ellipsoid in the AQx, AQu; AQx, Aco and AQv, Aco 

z_ 
.2 
tad 
t w  

0 ' I 

A 

> 
ID 

13 0 E 

<~ 0"04 

-1 
A Oy(A 1) 

 oO,,o // 

' - 0 1 0 6 '  ' 0 ' ' 0"06' 

AQ(A -1) 

Fig.5. Sections of an experimentally determined resolution 
ellipsoid and a typical AQ, dependence of the resolution 
function. 

planes; for convenience we have plotted this in terms 
of AE(=hAco). Fig.5 shows also a typical AQz depen- 
dence of the resolution function. 

The experimental resolution function has the form 
predicted by the analytic expression and we are thus 
able to compare it directly with that calculated from 
the instrumental parameters r/~, r/A, C~o, t~l, 0C2, ~3. Having 
confirmed these parameters we can then calculate the 
resolution function at any point in co, Q space, the 
dependence on AQz being independent of position. 

Application to phonon measurements 

Intensities and line shapes 
We see from equation (10) that the intensity observed 

for a given setting of the diffractometer (co0,Q0) is 
given by the convolution of the scattering cross section 
with the resolution function centered on co0,Q0. For 
phonon scattering we have a surface in co, Q space for 
which the cross section is finite. We shall call this the 
dispersion surface and we shall assume that to a first 
approximation the cross section is constant for that 
part of the surface over which the resolution function 
is appreciable. We shall also assume for the moment 
that the width of the surface is a 5 function, that is 
we shall ignore any broadening due to finite phonon 
life-times or to sample mosaic. Under these conditions 
the intensity is simply given by integrating the resolu- 
tion function over the dispersion surface, and the cal- 
culation can be further simplified by considering the 
dispersion surface to be planar, as a first approxima- 
tion. 

An expression for the intensity for the special case 
with co0,Q0 on a planar dispersion surface and with 
no in-pile or detector collimation has been given by 
Collins (1963), who uses this to provide a basis for 
focusing considerations. We have derived in a similar 
way the intensity for the more general case of a planar 
dispersion surface passing through any point in the 
resolution function and including all the collimation. 
The resultant intensity is of the form: 

I=Io  ex z 2 p ( -  2Hs)  (12) 

where I0 is the peak intensity for COo, Q0 lying on the 
dispersion plane and Hs is proportional to the distance 
of COo, Q0 from the dispersion plane. The inclusion of 
all the collimation makes I0 and Hs rather complex 
functions of the instrumental parameters; we therefore 
feel that the matrix notation is more convenient for 
calculation purposes and we have calculated in Ap- 
pendix III expressions for I0 and Hs in terms of Mkt. 

It can be seen that if our Gaussian approximations 
are valid then any linear scan in co, Q space passing 
through the dispersion surface will be Gaussian in 
shape and we can readily calculate the predicted width, 
using computer programs to calculate Mg~ and hence 
Hs. Comparing this with the observed width it should 
then be possible to investigate line broadening arising 
from finite phonon life-times. Nevertheless, in order to 
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choose the most favorable scans for this type of work 
it is still necessary to consider focusing effects. 

If the sample has a finite mosaic spread we must 
consider the dispersion surface to have a finite width. 
We may consider any point on the surface to be spread 
out by the mosaic along the AQy and AQz directions 
and hence calculate the width from a knowledge of 
the mosaic spread. If the mosaic spread of the sample 
is Gaussian, then the width of the dispersion surface 
will also l:e Gaussian and we can readily take this 
effect into account in calculating the widths of experi- 
mental phonon peaks. Additional broadening due to 
finite phonon life-times can then be studied by com- 
paring the calculated and observed peak widths. 

Focusing effects 
Focusing effects in phonon measurements are essen- 

tially of two different types. We can firstly choose our 
experimental parameters to optimize the peak intensity 
10 and secondly choose our mode of scanning in co, Q 
space to minimize the width of the observed peak. 
Beth these tylzes of focusing can be studied by con- 
sidering the relationship of the resolution ellipsoid to 
the dispersion surface. 

As can be seen from Figs.4 and 5 the resolution 
ellipsoid is extremely aspherical and it is this property 
which gives rise to the focusing effects. One principal 
axis is always along AQz, and since we shall consider 
only cases for which Qz--0 we shall not discuss the z 
dependence of the ellipsoid further. In the cases con- 
sidered, which are for typical 'parallel' arrangements 
as illustrated in Fig. 1, one other principal axis is near 
the AQz direction and the remaining two are rotated 
somewhat from AQy and Aco. Moreover, the ellipsoid 
is elongated towards AQz more than towards AQu and 
is considerably elongated out of the Aco =0  plane. 

Since we have considered the resolution in terms of 
the energy lost by the neutron as a function of Q we 
can simply consider the scattering cross section as the 
dispersion surface co(q) where q is a vector in Q space 
from the relevant Bragg point and the momentum of 
the created phonon is - hq .  That is for phonon creation 
(energy loss) we plot co(q) positive and for phonon an- 
nihilation (energy gain) we plot co(q) negative. 

For a planar dispersion surface intensity focusing 
will occur when the resolution ellipsoid and the dis- 
persion surface are aligned to maximize the area of 
the surface which is enclosed by the resolution ellip- 
soid. For a non-planar dispersion surface we must 
weight each point on the surface by the resolution 
function at that point. For simplicity we shall consider 
intensity focusing to be of two types, 'Q' focusing and 
'gradient' focusing. 

If we consider, for purposes of illustration, a dis- 
persion surface as some sort of cone around the Bragg 
point, the section of this in the Aco=O, AQz=O plane 
will be roughly circular. Since the resolution ellipsoid 
is elongated in this plane along AQz partial focusing 
will occur for particular points on the section when the 

sectional ellipse is aligned along the circumference as 
illustrated in Fig.6. 

The more important 'gradient' focusing arises when 
the orientation of the ellipsoid is such that the longest 
principal axis, which lies roughly in the Aco, A Q,, plane, 
is aligned in the dispersion surface. Since the principal 
ellipse lying roughly in this plane is so asymmetric 
marked focusing or defocusing can occur for transverse 
phonons with gradqc~ along Qy, depending on the value 
of the gradient. Focusing effects are clearly far less for 
longitudinal phonons with grad,w along Qz, since for 

SENSE OF kt 

TO O 
Fig. 6. Illustration of 'Q' focusing, showing the intersection of 

the dispersion surface and the resolution ellipsoid on the 
Zoo = 0, A Q~ = 0 plane for longitudinal (L i, L2) and transverse 
(TI, T2) phonons. 

ENERGY LOSS 

ENERGY G A I N / .  

^ 

T1 /1 \ 

Fig. 7. Illustration of 'gradient' focusing, showing the intersec- 
tion of the dispersion surface and the resolution ellipsoid 
on the E, Q plane for longitudinal (Lt,Lz; g0  [1 2nx) and 
transverse (T1, 7"2; ~ d. 2n~) phonons. 
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these the ellipsoid is always tilted almost perpendicular 
to gradqco. These effects are illustrated in Fig.7, and 
we may note that a focusing position for energy loss 
is a defocusing position for energy gain and vice versa. 
We may also note in passing that in the case of mag- 
non scattering the gradient of the dispersion surface 
may be very large, resulting in better focusing being 
achieved for the longitudinal modes. 

Figs.6 and 7 also illustrate the conditions under 
which intensity focusing may be undesirable, namely 
when the dispersion surface has any appreciable cur- 
vature. This will occur when q is small or when the 
magnitude of gradq~ is changing rapidly, for example 
at Kohn anomalies, and will introduce an asymmetry 
into an exFerimental peak and give rise to a displace- 
ment of the observed maximum intensity. Although 
corrections can be applied if the dispersion surface is 
known sufficiently well, under these conditions it may 
well be advantageous to minimize the overlap of the 
resolution function and the dispersion surface in cer- 
tain directions. 

It is also clear from the figures that the width of a 
phonon peak will depend on the particular scan in co, Q 
space used and the ideal scan will be one normal to 
the dispersion surface. However, it is nct always con- 
venient to adopt a general scanning mode and it may 
therefore be more convenient to consider only 'con- 
stant Q' and 'constant co' scans and use whichever is 
more suitable for a given phonon. 

To achieve a more favorable focusing condition in 
a particular case we can select the best point in recip- 
rocal space from those at which a particular phonon 
can be observed and secondly we can change our in- 

0 t. . , , . . 
9 II 13 9 II 13 3 5 7' 9 I1 
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Fig.8. Experimental 'constant Q' phonon peaks from germa- 
nium and iron. The figures in brackets are the factors by 
which the intensity has been multiplied. 

strumental parameters, in particular riM, dA, and the 
relative senses of 20M, 20S and 20A, to give the most 
suitable resolution function. However, the orientation 
of the resolution ellipsoid is surprisingly insensitive to 
changes in the instrumental parameters and any focus- 
ing so achieved may be gained at the expense of over-all 
intensity. A series of calculations is being made to 
investigate these effects as fully as possible. It should 
be pointed out that the resolution functions for energy 
loss and energy gain are not equivalent owing to the dif- 
ference in kF, a factor which should also be taken into 
consideration. 

To illustrate and support our earlier considerations 
we present in Fig.8 a series of experimental phonon 
scans obtained by Minkiewicz and Shirane with a per- 
fect germanium sample and an iron crystal with a 
mosaic spread of 7', adopting a 'constant Q' mode of 
scan. We have deliberately included various degrees of 
focusing and defocusing and compared the results for 
energy loss and energy gain. Fig.9 shows the points 
in reciprocal space at which measurements were made 
and in Table 1 we give the observed and predicted 
widths of the peaks, taking into account the mosaic 
spread of the sample. The theoretical resolution func- 
tion used was in this case calculated from values of 
r/M and r/A which were measured directly and values 
of (~0,(~1,0(2,(~3 which were calculated from the dimen- 
sions of the collimators. This was compared with the 
observed resolution function at the germanium 200 re- 
flection (Fig.5) and the dimensions of the resolution 
ellipsoid were found to agree within a few per cent. 
In general the over-all agreement between the calcu- 
lated and observed widths is reasonably good. How- 
ever, in almost all the cases, we find the observed 
widths to be greater than the calculated. While it is 
tempting to attribute these differences to the presence 
of finite phonon life-times, we feel further work is called 
for before this point can be definitely established. Ex- 
periments on silicon at low temperatures are now in 
progress with a view toward checking this important 
feature of our results. 

Table 1. Observed and predicted widths of phonon peaks 
Half-width 

Phonon Energy 
(see Fig. 8) (meV) Observed 

A 10.8 1.5 
B 10.8 2.0 
C 6.8 0.6 
D 6.8 4.2 
E 9.9 1.2 
F 14.8 1.0 
G 7.8 1.3 
H 10.5 1-2 
I 10.3 1-2 
J 15-2 1.0 
K 8.0 1 "4 
L 10.7 1"1 
M 25-2 1-4 
N 28.8 2.0 
O 31.6 3"3 
P 33-5 3"8 
Q 35-9 5.5 

(meV) 
Predicted 

1.3 
1.8 
0-4 
3-4 
1.2 
1.2 
1.2 
1.1 
0.9 
0.8 
1.1 
1.0 
1.3 
1.7 
2.3 
2.9 
4"2 
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Summary 
We have shown that the theoretical resolution function 
for Gaussian mosaic and collimation functions is such 
that the loci of constant probability are ellipsoids. 
Quite good agreement has been obtained between an 
observed resolution at a Bragg reflection and that cal- 
culated from the parameters of the instruments. These 
instrumental parameters also lead to reasonable pre- 
dictions for the widths of certain phonon peaks, al- 
though there seems to be a systematic disagreement 
between calculated and observed widths of the phonon 
peaks. 

The applications of these resolution ellipsoids in 
choosing the particular spectrometer arrangement for 
scanning an inelastic neutron group are obvious, both 
from the viewpoint of maximizing peak intensity and 
also with respect to establishing on an absolute basis 
quantitative peak widths at various points on the dis- 
persion surface. Although we have not emphasized the 
point one can use this analysis to establish the condi- 
tions under which distorted peaks are to be expected 
or how most effectively to make scans in the immediate 
vicinity of Bragg peaks. Admittedly, the algebra in- 
volving the dependence of the orientation and size of 
the resolution ellipsoid on the spectrometer parameters 
is cumbersome; however, it is relatively easy to pro- 
gram the entire operation to provide information of 
value to the experimentalist. 

We wish to acknowledge the numerous and detailed 
conversations with our colleagues, Drs Shirane, Min- 
kiewicz, Alperin, and Pickart. In particular we are 
grateful to Dr G. Caglioti for his careful criticism of 
the manuscript and to Miss E. Wolfson for the com- 
puter programming associated with the work. 

APPENDIX I 
In-pile collimation 

The probability function for an in-pile collimator will 
be: 

{ 1 [7~ gg~} (13) P(7°'J°)=exp - 2 \a~ + 3o 2] ' 

and in addition there will be a term in 61-6o arising 
from the vertical mosaic of the monochromator crystal: 

1 [J1-_fi0/= } 
P ( a l - 6 0 ) = e x p t - ~ k ~  \Q--M~/ , (14) 

where QM is the scattering vector for the Bragg reflec- 
tion of the monochromator, r/~, defines the mosaic 
spread in the vertical plane containing QM and we 
assume Ak~ to be small compared with kz. 

The horizontal in-pile divergence angle is related to 
the corresponding divergence angle for the mono- 
chromated beam and the Bragg angle of the mono- 
chromator. 

We have that 
k~ sin O'M=kz sin 0M, (15) 

where 0~ is the Bragg angle of the monochromator 
for wave number ks. 

Therefore 
kt(sin OM--sin 0~) 

...... . (16) 
sin O~ 

Ak~ = 

If we put 

then for small 
OM=OM-I"g (17) 

Ak~ e 
k~ tan OM " 

(18) 

Now 
2e = 71 - 7o, (19) 

so that 
dk, _ 7o- Y~ (20) 
ki 2 tan OM 

and 
P0 = 2(Akt/ki) tan OM + 71 • (21) 

For a given value of 61 we can integrate the vertical 
terms over J0: 

I [6 ( :~  ~'6,-6o/= ] 
P , , = l e x p { - ~ - [ f l o 2  + k } \  Qmrl, I .i } dJo (22) 

1 62, 
= Po exp {-- ~ ( 4 tanEOMrl~ + fl~ ) } , (23) 

where 

P°= 1 1 " (24) 

-~-o 2 +  4 2 tan OM~]M 

It may be noted that for fl0 large Pal ---> P0 and the 
exponent becomes independent of the =vertical mosaic 
spread. 

GERMANIUM 004 

(OOi} 

T ,,,,o, 

002 RON 220 

Fig.9. The points in reciprocal space at which the peaks in 
Fig. 8 were measured. The Brillouin zone around each Bragg 
reciprocal lattice point is shown. 
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APPENDIX II 
Dtrivation of the resolution matrix 

For one phonon neutron scattering processes the con- 
servation of momentum and energy are represented by 
the following equations: 

k 1 = k ~ -  (27r~ +q ' )  (25) 

hE ])2 
2m k~= - ~  kZ~-ho9 (26) 

where ki and kf are the wave vectors of the incident 
and scattered neutron respectively, m is the mass of 
the neutron, 2zc, is a reciprocal lattice vector and q' 
and co are the wave vector and angular frequency of 
the created phonon. 

The conservation of momentum [equation (25)] is 
illustrated in Fig. 3, where we show the most probable 
wave vectors, kx and ke, for incident and scattered 
neutrons and define three sets of axes with respect to 
the vectors ki, ke and Q ( = k F - k i ) .  It is convenient 
to define q(= - q ' )  as the displacement of Q from the 
Bragg reciprocal lattice point concerned. (See Applica- 
tion to phonon measurements.) The notation used is 
summarized in Table 2. 

k~ 
kf 
k t  
kF 
Ak, ' 
Ak/  
~1 

YJ 
~j 
]=0 
j = l  
]=2 
]=3 
qm 

Table 2. Notation 
Any incident wave vector 
Any scattered wave vector 
The most probable k~ 
The most probable kf 
k~-kr 
k,-- kF 
Horizontal collimation angle 
Vertical collimation angle 
Horizontal divergence angle 
Vertical divergence angle 
In-pile region 
Monochromator to sample 
Sample to analyzer 
Analyzer to detector 
Horizontal mosaic spread of monochromator 
Horizontal mosaic spread of analyzer 

If we put A k , = k i - k x  and A k i = k / - k F  then the 
change in Q from the most probable value is given 
from equation (25) as 

AQ = a k i - a k , .  (27) 

If Ak, has components xl,yl,zl  along the axes ix,jb li 
defined with respect to kz and Ak~. has components 
x2,Y2,Z 2 along axes i2,j2,12 defined with respect to ke, 
then we can readily determine their components along 
axes io,jo, lo defined with respect to Q. 

We then have 

Ak, = (xlb +yla)i0 + ( -  xla + ylb)j0 + zll0 (28a) 
Ak/= (x2B +y2A)i0 + ( -  x2A +y2B)j0 + z210, (28b) 

where 
a = sin q~ A = sin(20s + 4) (29) 

b = cos q~ B = cos(20s + ~ ) ,  

q~ being the angle between kx and - Q .  

From equation (27) we then have 

A Qx = x 2 B  + y 2 A  - Xl  b - y~a (30a) 

AQv= - x 2 A  +yzB+x la -yxb  (30b) 

AQz = z 2 - z l .  (30c) 

From equation (26) we have also 

h h 
- -  X2kF = - -  X l k I - - A o 9  (31a) 
m m 

X l k I  - -  A12/2 
x2= kF (31b) 

=2xl-Al2/(2kF) , (31c) 
where 

2m 
12= ~ co (32a) 

and 
2 =kz/kF.  (32b) 

Eliminating Y2 and Ys from equations (30a) and (30b) 
respectively we obtain 

ylO~ = BA Q x -  AA Qv + x l f l -  x2 (33a) 

y20~ ~--- b A Q x -  aAQv + x l -  x2fl , (33b) 
where 

= sin 20s fl=cos 20s.  (34) 

Substituting for x2 from equation (31) we have 

y ~ = [ B A Q x - A A Q v - x x ( 2 - f l ) +  Ag2/(2kF)]/o~ (35a) 

y 2 = [ b A Q x - a A Q v -  xa(fl2 - 1) + flAQ/(2kF)]/o~ . (35b) 

If we write 
Yl = CXl + D (36a) 
Y2 = EX1 + F (36b) 
X 2 = ~,X 1 -~- H (36c) 

and put 
AQx= Xa,AQv= X2,AOg= X 4 (37) 

then we have 
D =dlXa + d2X2 + d4X4 (38a) 

F =fiX1 +j~X2 +f4X4 (38b) 

H= h l X 1  + h2X2 + h4X4 , (38c) 

where the values of dj, J) and hj are given from equa- 
tions (32), (35) and (36) as: 

dl=B/o~ dz=-A/o~ d4=m/(o~hkF) 

f i = b / ~  f z = - a / ~  f4=flm/(~hkv) 

hi =0  h2=0 h4= -m/ (hkv)  (39) 
and 

c - -  - ( , l - / ~ ) / ~  (40a)  

E =  - ( f 1 2 - 1 ) / ~ .  (40b) 

The resolution function, ignoring the effect of vertical 
collimation, is given by 

RHOC l ~ exp{_½[(alxa+a2Ys)2 + a3y 122 + a4Y 222 
d-- o o  

+ (asx2 + a6Y2) 2 

+ (a7xl + aayl) 2 + (a9x2 + asoYE)2]}dxldyldx2dy2, (41) 
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where aj is given in terms of the collimation param- 
eters" 

tan OM 1 2 tan 0M 
a x -  r/Mki a4--  ~x2k F a 7 -  c~0ki 

1 tan OA 1 
42--  r lMk I a s -  rlAk F a8-  cxoki 

1 - 1 2 tan Oa 
a3 --  oqk i  a6 = a9 - flAke o~3k F 

[See equations (6), (7) and (8)]. 

1 
(42) 

al0 ~3kF 

We are assuming that  Ak, and Akl are small com- 
pared with kz and ke  and that  the usual small angle 
approximations are valid, so that y~ = k~7~, etc. We may 
note that  in general the resolution function is an inte- 
gral over four variables but that  for elastic scattering 
dx~ =dxz and the number  of variables is reduced to 
three. 

Writing equation (41) as 

l~ oexp{-½[A 'x~ + B' x~ + C'])dx, (43) RHOC 

and putt ing b0 = a~az + a7a8 

b1=422+ 2 2 4 3 + ~ 8  

b e = a ] +  2 2 a6 + alo 

b4 = 45a6 + a9alo 

bs=a~ +a~ (44) 
we have 

A' =2boC+blC2+bzEZ+b322+2b42E+bs (45a) 

B'  = 2[(b0 + b~C)D + (b2E+ b42)F+ (b32 + b4E)H] (45b) 
C' =btD ~- + bzF 2 + b3H z + 2b4FH , (45c) 

and on integration equation (43) becomes 

1 B 'z 
R z - I = R ° n e x p { - 2  ( C ' -  4A ' ) } "  (46) 

Hence the equation 

B,2 
C ' -  - -  = P  (47) 

4A' 

will represent the locus of points of  probabil i ty 
/~o n exp ( -p /2 ) .  

F rom equations (45) it can be shown that  

B'z  
C' 4A' g°D2+glFZ+g2H2+g3FH+g4DF 

+gsDH,  (48) 
where 

go = bl - (bo + bxC)Z/A ' 
gl = be -  (b2E+ b42)2/A ' 
gz = b3 - (b32 + b4E)Z/A ' 
g3 = 2 b 4 -  2(beE + b42)(b32 + b4E)/A' 
g4 = -- 2(bo + b~ C ) ( b 2 E  + b4).) /A'  

g5 = -- 2(b0 + blC)(b32 + b4E)/A'. (49) 

Hence from equation (38) we see that  equation (47) 
represents an ellipsoid in AQx, AQv, Aco space and 
writing this as 

S, S, MezXeXz=p (50) 
k,I=1,2,4 

we have that  

Met = ½[2godxdz + 2glfkft + 2gzhJ~z 
+ g3(fkhz +fthe) + g4(dkf~ + dzfD 
+ gs(dehz + dzhe)] (51 ) 

for k and l =  1, 2 or 4. 
Since the vertical term in the resolution function is 

independent of  the horizontal term we have 

Me3 = M3z = 0 (52) 
for k , l#  3 
and 3(3 = AOz. (53) 

The vertical term is given by 

Rvoc o- I°°ooexp{- 1~[411+2 a22z2]}dzldzz , (54) 

where 
1 1 

421= (4 2 ,2 2 2 + . . . .  (55a) Plk~ tan OMrlM+flo)k I 2 2 

1 1 
a~2= - - y - ~  + - -  (55b) fl2t~e (4 t an  204 ,2 2 2 • r/A +fl3)ke 

We have 
X3 = AQz= z z -  zl . (56) 

Subst i tu t ingthis  into equation (54) we obtain 

R v o c e x p { - ½ M 3 3 X ] }  , 
where 

2 2 
~11~12 

M 3 3 =  --2 2 " (57) 
fill +al l2  

Hence the complete resolution function is 
4 4 

R = R 0 e x p { - ½  X X MkzXeXz} (58) 
k = l , l = l  

and the probabil i ty ellipsoid in Am, AQ space is: 
4 4 

Z Z MezXeXz=p,  (59) 
k=l ,  1=1 

where Met is defined by equations (51), (52) and (57). 

A P P E N D I X  III 
Width of  phonon peak 

If  we take our origin for Aco0,AQo to be the point  of  
intersection of the scan with the dispersion plane we 
can define the scan by the relation 

Acoo = s .  AQ0, (60) 

Ae)0 and AQo representing the displacement of the O9o 
and Q0 from this origin, and s being a unit vector in 
the direction of  the scan. 

We consider a planar dispersion surface through the 
point  Aco0,AQ0 (see Application to phonon measure- 
ments; Focusing effects) we can write 
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Ao~ = gradq~o. (AQ-AQ0)  +Aco0 (61) 

for any point on this surface, and 

c = - gradqoo (62) 

is the group velocity of the phonon. 
If cl, c2 and c3 are the components of c along AQx, 

AQv and AQz respectively and we consider only the 
case of a symmetry plane such that c3=0, tkea using 
the same notation as before we can write equation (61) 
as 

)(4 = - cIX1 - c2Xz + W ,  (63) 

where 
W=Aco0+c.  A Q 0 = ( s + c ) .  AQo (64) 

The observed intensity is then obtained by integrat- 
ing the resolution function over the plane defined by 
equation (63). Substituting the relation in this equation 
into the exponent of the resolution function [equation 
(59)] we have: 

4 4 
X X MklXIcXl=M11X~+M22X~+M33X~ 

k=l  1=1 

+ M44(- ClXI - c2Xz + W) 2 + 2M12XIX2 

+ 2(M~4X~+ M24Xz)(-c~X~-c2X2+ W) (65) 

and on integration over X1,X2 and X3 we obtain 

Iw = 2nR33GtG2exp( - ~'-' 3 ,, 1 (~. 2 I///2"~) , (66) 

where 

l ~_ooexp{ ½M X~}dX3 R33 = -- 33 

G1 = 1/( Mlx + c~ M44-  2cl M14 

(67a) 

(67b) 

G2 = 1/[M22 + c22M44- 2c2M24 

-G1{M12-elM24-c2(M14-ClM44))  2] (67c) 

G 2 = M44 + Gle1(M14 - clM44) 2 

-- G2[ - c2M44 + M24 - GI(MI4 - clM44) 
{ Mx2 - c lM24 - c2( M14 -- ¢ 1 M44) } ]2 .  (67d) 

Comparing equation (66) with equation (12) we see 
that the peak intensity is simply 

Io=2nR33GaG2 (68) 
and 

Hs  = G3 W .  (69) 

The characteristic width of a linear scan in Aco, AQ 
space in terms of W is thus l/G3. 

We note that in this derivation we have assumed 
that over the range of the scan, i.e. the range of Ao~0 
and AQ0 values, that the resolution function itself does 
not change [see equation (11)]. This is valid only if the 
range of A~o0 and AQ0 is small compared with COo and 
Q0, the positions corresponding to the intensity maxi- 
mum in the scan. 
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Application de la M~thode d'Addition Symbolique: 

Structure Cristalline de l'Acide N-a-Naphtyltetrahydro-1,2,3,6-phtalamique 

PAR J. P. MORNON 
Laboratoire des Rayons X, IRCHA,  12 Quai Henri 1V, Paris 4 e 

(Refu le 23 fivrier 1967) 

The symbolic addition method has been used to determine the crystal structure of N-v.-naphthyl-l,2,3,6- 
tetrahydrophthalamic acid. The material crystallizes in the space group P21/c with cell dimensions 
a = 17.43, b = 4"97, c = 22.90/~, fl= 132 °. A comparison on structural aspects is made with N-c~-naphthyl- 
4-chlorophthalamic acid. 

Introduction 

La d&ermination des structures cristallines de plusi- 
eurs acides arylphtalamiques a ~t6 entreprise pour con- 
tribuer /t l'explication de leur mode d'action sur les 
v6g&aux. En effet certains de ces compos6s inversent 

le sens du g6otropisme de racines v6g6tales (Mentzer, 
Molho & Pacheco, 1950). Cette r6solution de struc- 
ture par application de la m&hode d'addition symbo- 
lique fait suite tt celle de l'acide N-c~-naphtylchloro-4- 
phtalamique (Mornon, 1966). L'acide N-c~-naphtyl- 
t6trahydro-l,2,3,6-phtalamique a pour formule: 


